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Abstract. Within the context of a statistical model, that incorporates final-state interaction between a pair
of fragments, we have calculated the energy spectra associated with the production of different isobaric
pairs as a function of their lab kinetic energy and isobaric and elemental distributions of nuclei produced in
the 4He+ 28Si reaction at cm incident energies of 102.7, 173.7, 300, 500, and 1000MeV. Double differential
cross-section of isobars 16, 20, and 24 as a function of their lab kinetic energies at 30◦ and the same for
isobar 24 at 10◦, 30◦, 60◦, and 90◦ have been calculated at cm incident energies of 102.7 and 173.7MeV
and compared with the data of Woo et al. Calculated yields follow the trend of the data at each angle,
and calculated angular distributions also reproduce the general trend of the observed ones. A key feature
of the model is that it allows for fragments to be emitted in ground states as well as in excited states
that are allowed by the conservation of energy. The analysis establishes that the fragments are emitted in
excited state. The excitation energies for A = 24 and 16 are deduced from the data. The observed angular
distributions for A = 7, 12, 16, 20, 24, and 28 are well accounted for assuming them to be emitted in excited
states. The relative production probabilities for different elements and isobars are energy dependent. The
yields for unstable elements, 5Li, 8Be, and 26Al, are found to be significant. The relative fragmentation
probabilities of all allowed isotopic pairs have been presented.

PACS. 24.60.Dr Statistical compound-nucleus reactions – 25.55.-e 3H-, 3He-, and 4He-induced reactions
– 25.60.Gc Breakup and momentum distributions

1 Introduction

Outside the proactive cocoon of the Earth’s atmosphere is
a universe full of radiation. Space contains elements from
hydrogen to nickel in various proportions. These elements
collide with the walls of space crafts causing the emis-
sion of secondary radiation inside space crafts, which is
a serious hazard to occupants as well as instruments in
the cabin [1]. The development of protecting devices re-
quires the knowledge of the radiation level inside the cabin
caused by secondary radiation that is made of fragmen-
tation of nuclei of the elements of the wall by incident
galactic nuclei. Because of the varied nature of galactic
nuclei and their broad energy spectra, much of the pro-
duction cross-sections are to be determined theoretically.
Aside from this, micro-electronic measuring devices, con-
taining quite often silicon and oxygen, are, in some cases,
directly exposed to galactic nuclear radiation. The sub-
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ject matter of this topic would provide an understanding
of the fragmentation of silicon by alpha-particle, the sec-
ond most abundant element in space. It is also to be noted
that the understanding of this process is also important in
determining the elemental distribution in the cosmos [2].

Since any theoretical model to describe fragmentation
involves approximations, it is necessary to test the model
against existing data. Such data exist for fragmentation
of 28Si by 117.4 and 198.5MeV (lab) alpha-particles. At-
tempts to understand them within the context of an evap-
oration model had only a limited success. We, therefore,
first try to account for these data theoretically.

Alpha-particles with lab kinetic energies of 117.4 and
198.5MeV (E/A ≈ 29 and 50MeV/nucleon) are close to
the energy range used in explaining the fragmentation of
16O by proton using a statistical model [3]. This model
distinguishes itself from the direct production models dis-
cussed in [1] in at least one important aspect: it includes
the possibility that the fragments are being emitted both
in ground and in excited states. The method used in [3]
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also incorporates final-state interaction between two mem-
bers of the emerging fragments, which is distinct from the
usual evaporation model.

A key assumption of the model is the formation
of a compound nucleus (CN) as an intermediate step,
which, then, decays to a pair of interacting fragments of
varied excitation energies allowed by the law of energy
conservation.

Within the framework of this model, we have examined
the experimental data of Woo et al. [4] on the fragmenta-
tion of 28Si by 117.4 and 198.5MeV (lab) alpha-particles,
and find that the overall trend of these data is reasonably
accounted for by the calculation. We, therefore, present
here the relative probabilities of isobaric and isotopic pro-
ductions of nuclei from A = 1 to 31 in the fragmenta-
tion of 28Si by alpha-particle from threshold energy to
1.0GeV (cm) within the context of this model. At inci-
dent energies above that, the treatment would require the
inclusion of relativistic effects, which is beyond the scope
of this treatment.

In this next section, we present the theory followed
by a section on the determination of the final-state in-
teraction used in the calculation. In sect. 4, we discuss
the results first for incident alpha-particle energies of
117.4 and 198.5MeV (lab), and then for 300, 500 and
1000MeV (cm).

2 Theory

According to the statistical theory of Weisskopf and Ew-
ing [5], Newton [6], and Ericson [7], a nuclear reaction
takes place in two steps: a) the incident particle together
with the target nucleus form a compound nucleus, CN,
and b) the CN then decays to final products. The two
steps can be considered as separate processes following
one another. The total cross-section of the whole process
is, then, basically, the cross-section for the formation of
the CN and its subsequent decay probabilities into final
products.

In this work, we consider the fragmentation of the CN
into a pair of fragments, i.e. binary fragmentation, each of
which could be in ground and all possible excited states al-
lowed by the energy conservation. The double differential
cross-section for the production of a pair of fragments A1

and A2 in the final channel α′ from the entrance channel
α, in the cm system, is given by

d2σαα′

dΩdε
= σC





Pα′ (I, UC , θ, ε)
∑

α′
Pα′ (I, UC)



 , (1)

where σC is the formation cross-section of the CN with
spin I and excitation energy UC , Pα′(I, UC , θ, ε) is the
decay probability of the CN into a pair of fragments A1

and A2 with relative energy, ε, in a direction making an
angle θ with the incident beam in the final channel α′, and
Pα′(I, UC) is the decay probability of a particular pair of
fragments over all angles with all possible excitation en-
ergies allowed by the conservation of energy, and the sum

is over all possible final channels α′. Following Ericson [7],
the numerator in (1) is given by
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where ρC(I, UC) is the level density function of the CN
with spin I and excitation energy UC ; ρ(ji, Ui), and σ2

i ,
with i = 1, 2, are, respectively, the level density function
and the spin-cutoff factor for the two emerging fragments
A1 and A2; J0(x) is the modified Bessel function of ze-
roth order; Q0 is the total Q-value of the reaction, i.e.
the energy required for the decay to the ground states of
fragments pair, and Tcm is the cm incident energy in the
entrance channel α. The transmission coefficient in (2),
T 12
l (ε), is that between the two emerging fragments in

the final channel α′. Following Ericson [7], we replace the
transmission coefficient, T 12

l (ε), by its value for l = 0, i.e.
T 12

0 (ε), implying that the decay probabilities are domi-
nated by zero orbital angular momentum.

For the level density function ρ(j, U), j and U being
the spin and excitation energy of the level, respectively, we
have adopted here the expression of Gadioli and Zetta [8]
derived by analyzing many experimental data. It is given
by

ρ(j, U) =
h̄3
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1
2 g

−3
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where a and g are, respectively, the level density param-
eter, 0.127AMeV−1, and the nuclear moment of inertia,
0.7[(2/5)AR2], with A is the mass number of the frag-
ment in consideration, and R = 1.5A1/3 fm; σ2 is the spin-
cutoff factor, (g/h̄2)[(u+t)/a]1/2, where h̄ is Planck’s con-
stant h divided by 2π, u is the effective excitation energy,
u = U −∆+(70/A), ∆ being the pairing energy [9], and t
is the thermodynamics nuclear temperature, u = at2 − t.

The level density formula, (3), is not valid at very low
excitation energies. At low energies we have approximated
it by applying a cutoff. The cutoff in the level density is
taken to be 5MeV for all fragments except for the proton,
neutron and the helium isotopes, for which it is taken to
be 50MeV. Above the cutoff energy, the level density is
given by (3) and below the cutoff energy, it is replaced by
1/cutoff.

Since the fragments emerging from the CN are mainly
in highly excited states, we cannot determine their spins
with any degree of certainty. Fortunately, the level density
function represented by (3) is a slowly varying function of
spin j, therefore we can use it to determine the level den-
sity function of either fragment by setting the value of the
spin j to zero, i.e. ρ(j, U) = π ρ(0, U). This can be done
without introducing any significant error into our calcula-
tions. After this replacement, we obtain the probability of
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decay for a CN into a pair of fragments A1 and A2 with
relative energy ε in a given direction θ to be the following
expression:

Pα′ (I, UC , θ, ε) =
h̄5
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where u1 = U1 −∆1 + (70/A1) and u2 = Q0 + Tcm − ε−
∆2 + (70/A2)− U1.

The differential cross-section, dσαα′/dΩ, can be ob-
tained by integrating Pα′(I, UC , θ, ε) over all possible val-
ues for ε:

dσαα′

dΩ
= σC





Pα′ (I, UC , θ)
∑

α′
Pα′ (I, UC)



 , (5)

where

Pα′(I, UC , θ) =

Q0+Tcm
∫

0

Pα′(I, UC , θ, ε) dε. (6)

Hence, the total cross-section, σαα′ , can be obtained by
integrating Pα′(I, UC , θ) over all angles, where the decay
probability Pα′(I, UC) of the CN into a pair of fragments
over all energies at all angles is given by

Pα′ (I, UC) = 2π

π
∫

0

Pα′ (I, UC , θ) sin θ dθ. (7)

The transmission coefficient, T 12
0 (ε), in (4) can be de-

termined from the solution of the time-independent
Schrödinger equation in spherical polar coordinates. In or-
der to obtain T 12

0 (ε), one needs knowledge of the nuclear
interaction, VN (r), between the pair of fragments in the
final channel α′. For this purpose, we take the potential
to be of a complex molecular type because a) the energy-
density functional formalism [10–13] as well as the two-
centered shell model calculation [14] indicates its real part
to be non-monotonic, b) the inverse scattering theory of
Alam and Malik [15] for the 12C–12C interaction has deter-
mined the potential to be of this type, and c) experimental
data can be fitted with this potential [16–18]. Another im-
portant advantage of using a complex molecular potential
is that one can obtain the potential between two nuclei
by a scaling procedure of the parameters determined for a
given system [13,17]. This is demonstrated by Haider and
Malik [17] who scaled the potential for the 12C–12C sys-
tem using information obtained from their previous study
of the interaction of the 16O–16O system and by Man-
ngard, Brenner, Reichstein and Malik [19], who obtained
the α-32S potential by scaling the α-28Si potential, as well
as by Shehadeh [20].

In the final channels, there are usually no elastic scat-
tering data to determine the potential. But we have used
the scaling procedure suggested by Haider and Malik [17]
to determine the complex potential between the pair of
fragments for all cases, except for proton and neutron
channels, where we have used the optical potential used
by Compani-Tabrizi and Malik [3]. Such potentials seem
to explain the data for the cases under considerations.

3 The complex molecular potential

The complex molecular potential is the sum of the real
and imaginary potentials:

V (r) = Vreal(r) + iVimag(r), (8)

where
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with the Coulomb potential, VC(r), being that of a uni-
formly charged sphere given by
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where Z1 and Z2 are the charges of the fragments pair,
and RC is the Coulomb radius.

The strength of the attractive part V0 can be scaled as
in [17]

V0 = bs

(

A
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3
1 +A

2
3
2 − (A1 +A2)

2
3

)

(11)

with bs = −10.2MeV, and A1 and A2 are the mass num-
bers for the fragments pair. The diffuseness parameter a0

is about 0.53 fm. The depth of the repulsive part V1 is
100MeV.

The imaginary part of the potential, Vimag(r), is taken
to be of the form

Vimag(r) = W (ε) e

[

−
(

r
R2

)n2
]

. (12)

The coefficient W (ε) is assumed to have an energy depen-
dence and is determined to be

W (ε) = V2

(

1 + C1ε+ C2ε
2
)

, (13)

where ε is the relative energy of the fragments pair.
The coefficients V2, C1, and C2 of the imaginary part
of the potential have previously been determined by
Haider and Malik [17] to be −1.613MeV, 0.02MeV−1 and
0.012MeV−2, respectively, and n1 in (9) and n2 in (12) are
taken to be 2.

The radii R0, R1, R2, and Rc can be expressed in the
following manner:

Ri = ri

(

A
1
3
1 +A

1
3
2

)

, i = 0, 1, 2, c (14)

with r0 = rc = 1.35 fm, r1 = 0.52 fm, and r2 = 0.83 fm.
Thus, one can obtain the potential between two emerg-

ing fragments from their mass and charge numbers.
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Fig. 1. Relative yields as a function of the relative kinetic energy, ε, for five different pairs of fragments marked, as shown in the
figures, for incident energies of 102.7, 173.7, 300, 500, and 1000MeV (cm). Spectra for 500 and 1000MeV have been multiplied
by the factors indicated in the figure.

4 Results and discussion

To fulfill the goal of this paper, i.e. to provide elemen-
tal and/or isobaric distributions of nuclei produced in the
fragmentation of 28Si by alpha-particle, one should exam-
ine the appropriateness of the model to account for the
observed data. For this purpose, one should examine the
extent to which the model could provide a reasonable ac-
count for the distribution of nuclei produced in the frag-
mentation in experiments.

4.1 Energy spectra

One may use (4) and (7) to compute the ratio
Pα′(I, UC , θ, ε)/Σα′′Pα′′(I, UC) in (1) for a given incident
energy. This is termed as relative yield. The excitation en-
ergy of a CN is shared among the relative energy, ε, of
the emerging fragments pair and the excitation energies
of each member of the pair. Thus, the relative yield is a
function of ε. The relative yield at ε = 0 case represents
the fact that the entire available energy is transmitted to
the excitation of the emerging fragments pair. The relative
yields for the maximum value of ε represent the produc-
tion probabilities of the emission of fragments pair in their
ground states.

In fig. 1, we have plotted these relative yields as a func-
tion of ε, for the pairs (1H+31P), (2H+30P), (7Li+25Al),
(12C + 20Ne), (14N + 18F), and (16O + 16O) for incident
alpha-particle energies of 102.7, 173.7, corresponding to
lab energies of 117.4 and 198.5MeV, respectively, 300, 500,

and 1000MeV (cm). These are typical of the kinetic en-
ergy spectra. Each relative yield is for a given isobaric pair
and has been obtained by summing over the relative yields
for each element of a particular isobar. The characteristic
features of these spectra are: a) The isobars are emitted in
all possible excited states. b) The probabilities of isobars
being emitted in highly excited states are much higher
than their being emitted in the ground state. c) Each of
these curves has a maximum for a given ε, which repre-
sents the most probable relative yield at the most probable
relative energy, εprob. This maximum shifts toward ε = 0
with increasing incident energy. This is because the trans-
mission coefficient, T 12

0 (ε), in (4), approaches its limiting
value of one with the increase in incident energy. In fact, at
T 12

0 (ε) = 1, the relative yield becomes exponential, which
is the signature of evaporation. Thus, the non-exponential
shape of the relative yields for the production of isobars
16, 20, and 24, indicated in fig. 2, which will be discussed in
the following section, is a consequence of incorporating the
final-state interaction in (4). d) Although neutrons, pro-
tons, and deuterons are emitted preponderantly, the pro-
duction of heavier elements competes favorably with them
in some cases, particularly at higher incident energies.

4.2 Comparison with the data

Woo et al. [4] have measured the production of the iso-
bars A = 16, 20, and 24 as a function of their lab kinetic
energies, Elab, at 30

◦ formed in the 4He+ 28Si reaction at
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Fig. 2. Kinetic energy spectra at 30◦ for different fragment mass numbers, as indicated in the figures, for incident energies of
117.4MeV (left) and 198.5MeV (right) (lab). Theoretical calculations and the data of [4] are shown by solid lines and solid
circles, respectively.

incident energies of 117.4 and 198.5MeV (lab), and the
same for the isobar A = 24, at 10◦, 30◦, 60◦, and 90◦.
They have also measured the differential cross-section for
a range of isobars, and hence it would be interesting to ap-
ply the model to examine these data. However, to compute
the double differential cross-section using (1), and the dif-
ferential cross-section using (5), one needs knowledge of
the CN formation cross-section, σC , which is model de-
pendent. To circumvent this problem, one may, however,
examine the extent to which the model can account for the
relative yields of A = 16, 20, and 24 at 30◦ as a function
of Elab of the emerging isobar and the same for A = 24 at
different angles. This is achieved by normalizing the the-
oretical production cross-section in one case, in this case
for isobar A = 16 near forward angles, and then calcu-
lating the relative decay probabilities for each isobar as
a function of Elab of the emerging fragment for the two
given alpha-particle energies. However, in order to com-
pare with the data, the decay probabilities of all elements
having a particular mass number are to be summed over.

The experimental data on double differential cross-
sections as a function of the lab kinetic energy, Elab, for
fragments having a particular mass number, plotted in
fig. 2 as solid dots, bears resemblance to the yield curves
plotted in fig. 1, implying that these fragments are emitted
in various excited states. However, the non-linear behav-
ior of the data as a function of energy in figs. 2 and 3 rules
out pure evaporation for this process. The maximum for
each mass number is at non-zero energy which is usually
characteristic of the statistical model used herein.

In fig. 2 we have compared the calculated probabilities
of the emission of isobars A = 16, 20, and 24 with the
data, as a function of their lab kinetic energies, Elab, for
the two incident energies of 117.4 and 198.5MeV (lab) at
30◦. The calculations are normalized to forward angles for
A = 16. The parameters used in the level density functions
are noted earlier. The calculated yields for all the three
isobars reproduced the observed energy dependence, thus,
providing reasonable support to the validity of this model
in calculating fragmentation probabilities. The total decay
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Fig. 3. Kinetic energy spectra for A = 24 at different angles, indicated in the figures, for incident energies of 117.4MeV (left)
and 198.5MeV (right) (lab). Theoretical calculations and the data of [4] are shown by solid lines and solid circles, respectively.

probabilities of a given isobar are obtained by calculating
the yields for each element of that isobar and summing
over all of them. In our calculations, we have included all
the excited elements for the same isobars. It is not clear
from the experimental setup whether or not they have
been accounted for that.

The double differential cross-sections for the yields of
the isobar A = 24 have been measured as a function of
the lab kinetic energy, Elab, at 10

◦, 30◦, 60◦, and 90◦ for
the two incident energies of 117.4 and 198.5MeV (lab). In
fig. 3 the theoretical relative yields as a function of Elab

for the production of the isobar A = 24 are compared to

the data at the two alpha-particle incident energies. Once
again, the calculations have been normalized to the data
at forward angles. Calculated yields follow the trend of the
data at each angle. It is, therefore, reasonable to conclude
that the model is suitable in producing the relative yields
of elements and isobars.

One may show that the fragments pair in the final
channel are emitted in excited states by calculating the
excitation energies of the fragments pair, U1 + U2, using
the peaks of the energy spectra. In fig. 4, we have plot-
ted the five theoretical relative yields as a function of the
relative energy, ε, for the production of A = 24 at the
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Fig. 4. Relative yields as a function of the relative kinetic energy, ε, for the five elements of the isobar A = 24.

Table 1. Excitation energies for A = 24.

Elab = 117.4MeV Elab = 198.5MeV

A1 +A2 εprob UH (MeV) UH (MeV) UH (MeV) εprob UH (MeV) UH (MeV) UH (MeV)
(MeV) calculated measured measured (MeV) calculated measured measured

at 30◦ at 90◦ at 30◦ at 90◦

8He + 24Si 4.5 36.806 39.928 34.414 4.25 108.185 109.759 101.998
8Li + 24Al 6.6 56.168 61.39 55.876 6.6 127.131 131.221 123.46
8Be + 24Mg 8.6 84.049 91.271 85.757 8.65 154.962 161.102 153.341
8B + 24Na 10.1 59.057 67.779 62.265 10.2 129.92 137.61 129.849
8C+ 24Ne 11.1 43.414 53.136 47.622 11.3 114.177 122.967 115.206

two incident energies of 117.4 and 198.5MeV (lab). Each
of these curves has a well-defined maximum correspond-
ing to the most probable relative energy, εprob, indicated
in table 1. Assuming that the lighter fragments, i.e. 8He,
8Li, 8Be, 8B and 8C, are emitted in their ground states,
we have calculated the excitation energies for the heavier
fragment, UH , for the five elements of A = 24, as indicated
in table 1.

One may compare the calculated results with the mea-
sured ones. Woo et al. [4] have measured the energy spec-
tra for A = 24 at different angles for the two incident
energies, as shown in fig. 3. At 30◦, the curves peak at
Elab = 4.0, and 2.5MeV for 117.4 and 198.5MeV (lab),
respectively. At 90◦, both curves peak at Elab = 1.5MeV
for 117.4 and 198.5MeV (lab). Assuming that the heavier
fragment A = 24 is emitted in an excited state at both
energies, we have calculated the excitation energies, UH ,
for the five elements of the isobar A = 24, as indicated
in table 1. The calculated excitation energies are in rel-
atively good agreement with those calculated using the
experimental data.

In the case where the two fragments are emitted in
excited states, we have calculated the excitation energies
for the isobar A = 16. In this case, both fragments are
emitted in excited states, sharing the total excitation en-
ergy equally (since they have the same mass number). For

A = 16, there are three elements, as indicated in table 2.
From their relative yields curves at the two incident ener-
gies of 117.4 and 198.5MeV (lab), we have calculated the
most probable relative energy, εprob, and the total exci-
tation energy, UT , for the three elements, as indicated in
table 2. The total excitation energy, UT , is the sum of U1

and U2. Woo et al. [4] have measured the energy spectra
for A = 16 at 30◦ for both energies, as shown in fig. 2.
Both curves peak at Elab = 4.5 and 3.5MeV for 117.4
and 198.5MeV (lab), respectively. We have calculated the
total excitation energy, UT , at 30

◦ for the three elements
of the isobar A = 16, as indicated in table 2. If we as-
sume that the measured excitation energy, UT , represents
the total excitation energy of the pair of fragments for
each element, i.e. the observed A = 16 is for both frag-
ments with A = 16, the total calculated and the total
measured excitation energies are in relatively good agree-
ment. These results support the interpretation in which
the fragments produced in these reactions originate from
binary breakup.

Based on the presumption that the pair of fragments
are emitted in excited states, the reactions are inelastic,
and the data on angular distributions need to be treated
as an inelastic process.

Woo et al. [4] have measured the differential cross-
sections as a function of lab angles, θlab, for the isobars
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Table 2. Excitation energies for A = 16.

Elab = 117.4MeV Elab = 198.5MeV

A1 +A2 εprob UT (MeV) UT (MeV) εprob UT (MeV) UT (MeV)
(MeV) calculated measured at (MeV) calculated measured at

30◦ 30◦

16C+ 16Ne 11.0 34.975 42.205 11.0 102.938 107.952
16N+ 16F 12.0 55.295 63.525 12.0 126.258 129.272
16O+ 16O 12.0 81.135 89.368 12.0 152.098 155.112
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Fig. 5. Typical angular distributions for compound-nucleus
reactions induced by light fragments with moderate incident
energy. The solid line represents the angular distribution in the
cm system, and the dashed line represents the same angular
distribution but in the lab system for three different γ values
indicated in the figure.

A = 7, 12, 16, 20, 24 and 28. In order to account for
these data, one needs to use (5) in the lab system. The
relation between the differential cross-section in the lab
system and the differential cross-section in the cm system
is given by

(

dσ

dΩ

)

lab

=

(

1 + γ2 + 2γ cos θcm
)3/2

|1 + γ cos θcm|

(

dσ

dΩ

)

cm

, (15)

where γ is defined as the ratio of the speed of the cm
in the lab system to the speed of the emitted particle
in the cm system. If the Q-value of an inelastic reaction
m2(m1,m3)m4 is Q∗, then γ is given by

γ =

(

m1 m3

m2 m4

Tcm
Tcm +Q∗

)1/2

, (16)

where Tcm is the cm incident energy. One may notice that
for fixed m1, m2, m3, m4, and Tcm, γ in (16) is a function
of Q∗, i.e. γ = γ(Q∗). This indicates that different values
of γ can be obtained by different Q∗ values, which implies
different values of excitation energies. As an example, for
Q∗ = 0, m1 = m2, and m3 = m4, γ is 1, which represents
an elastic reaction.

In fig. 5 we have plotted typical angular distribu-
tions for compound-nucleus reactions induced by light
fragments with moderate incident energy. The solid line

represents the angular distribution in the cm system us-
ing (5). It is nearly isotropic, which is a characteristic of
compound-nucleus reactions. The other three dashed lines
represent the angular distributions for the same solid line
but in the lab system using (15), and for three different
γ values, γ = 1, which represents an elastic reaction, and
the other two values 0.5 and 0.9, corresponding to two
different Q∗ values, which represent inelastic reactions.

Figure 6 shows the angular distributions for A = 7,
12, 16, 20, 24 and 28 for 117.4 and 198.5MeV (lab). The
dashed lines are the calculated ones and the dots con-
nected with solid lines are the measured ones [4]. The γ
value used for each mass number is shown in the figure.
The differential cross-section of a given isobar is obtained
by calculating the yields for each element of that isobar
and summing over all of them.

The calculated angular distributions produce the gen-
eral trend of the observed ones, indicating that the ob-
served data can be well accounted for assuming that a
daughter pair is emitted primarily in an excited state. The
general trends of the data are commensurate with the bi-
nary fragmentation assumption, although multi-particle
or sequential decay cannot be ruled out. But the analysis
done herein indicated that binary fragmentation is pos-
sible and could be a major contributor to the observed
cross-sections.

4.3 Elemental, isotopic and isobaric branching ratios

One may use (7) to compute the total decay probabil-
ity for a given element and, hence, compute the ratio
Pα′(I, UC , )/Σα−Pα−(I, UC). This ratio is termed as el-
emental, isotopic, or isobaric branching ratio for the pro-
duction of elements, or isotopes, or isobars, respectively.

One can construct isotopic branching ratios for each
element from hydrogen to 31P from table 3 at incident
energies of 102.7, 173.7, 300, 500, and 1000MeV (cm). In
fig. 7, we present these isotopic branching ratios. The most
dominant fragments are the isotopes of hydrogen and he-
lium and their respective partners sulfur and silicon. The
fragmentation probabilities of heavier elements relative to
those of hydrogen and helium increase significantly with
the increase in incident energy. These heavy elements are,
also, predominantly emitted in excited states.

It is of interest to examine the elemental and isotopic
branching ratios for the production of some of the elements
of astrophysical interest, particularly, in understanding
cosmic abundances. Elements like 5Li and 8Be, which are
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Fig. 6. Angular distributions for several mass numbers, indicated in the figures, for incident energies of 117.4MeV (left) and
198.5MeV (right) (lab). Theoretical calculations and the data of [4] are shown by dashed lines and solid circles connected with
solid lines, respectively.

unstable, are still produced in significant amounts com-
pared to the production of other elements and their rel-
ative abundances increase with increase in incident alpha
energy. The production of 26Al, which has astrophysical
significance, is comparatively large and increase substan-
tially with the incident energy. The dependence of elemen-
tal branching ratios on incident energy implies that the
production rates of elements in cosmos, e.g. in supernovae,
may have significant variance depending on the energetic
of the process. Moreover, elements other than hydrogen
and helium are predominantly produced in their excited
states.

One can construct isobaric branching ratios for iso-
bars 1 to 16 at incident energies of 102.7, 173.7, 300, 500,
and 1000MeV (cm), as indicated in table 4. Each isobaric
branching ratio is for a given isobaric pair and has been

obtained by summing over the elemental branching ratios
for each atomic number of a particular isobar.

In fig. 8 we provide isobaric branching ratios for iso-
bars 1 to 16 at incident energies of 102.7, 173.7, 300, 500,
and 1000MeV (cm). The production of the corresponding
isobaric partners of A = 16 to 31 can be deduced from
this figure by looking at the yields for its complementary
partner, for example, the yields for A = 17 are the same
as those of its partner, A = 15. As expected, at lower in-
cident energies, the maximum yields are those of A = 1,
2, 3, and 4. But the comparative yields of heavier isobars
increase with increasing incident energy. At 1.0GeV in-
cident energy yields of A = 16 to 27 (or corresponding
partner 16 to 5) are comparable to those of A = 1 to 4.
Most importantly, all isotopes are emitted predominantly
in excited states. This possibility, which is a major out-
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Table 3. Isotopic branching ratios for each atomic number for five energies.

A1 A2 Z1 Z2 Final channel
Isotopic branching ratio

102.7MeV 173.7MeV 300MeV 500MeV 1000MeV
n S 0 16 1n0 + 31S16 4.99E-02 9.15E-02 9.83E-02 1.00E-01 9.11E-02

H P 1 15

1H1 + 31P15 1.99E-01 1.62E-01 2.56E-01 2.09E-01 1.44E-01
2H1 + 30P15 4.47E-02 5.49E-02 9.67E-02 9.25E-02 7.08E-02
3H1 + 29P15 2.41E-02 3.03E-02 7.74E-02 6.53E-02 4.45E-02
4H1 + 28P15 2.08E-04 1.15E-03 3.43E-03 7.43E-03 9.94E-03

He Si 2 14

3He2 + 29Si14 3.29E-02 5.23E-02 4.02E-02 5.95E-02 4.94E-02
4He2 + 28Si14 5.02E-01 2.93E-01 1.45E-01 2.06E-01 8.87E-02
5He2 + 27Si14 1.11E-02 2.18E-02 1.94E-02 3.09E-02 3.09E-02
6He2 + 26Si14 8.80E-04 3.42E-03 4.31E-03 1.08E-02 1.15E-02
7He2 + 25Si14 5.87E-06 1.33E-04 4.07E-04 2.18E-03 3.09E-03
8He2 + 24Si14 2.29E-07 1.44E-05 8.51E-05 5.10E-04 1.33E-03

Li Al 3 13

4Li3 + 28Al13 6.98E-04 5.18E-03 6.52E-03 8.09E-03 1.55E-02
5Li3 + 27Al13 5.27E-02 3.99E-02 3.24E-02 7.16E-02 3.99E-02
6Li3 + 26Al13 3.13E-03 1.30E-02 1.15E-02 1.19E-02 2.03E-02
7Li3 + 25Al13 1.17E-03 6.63E-03 6.68E-03 8.22E-03 1.41E-02
8Li3 + 24Al13 4.72E-05 5.62E-04 1.12E-03 3.12E-03 5.18E-03
9Li3 + 23Al13 3.49E-06 8.34E-05 2.94E-04 1.75E-03 2.53E-03
10Li3 + 22Al13 5.64E-09 1.94E-06 2.40E-05 1.10E-04 6.67E-04

Be Mg 4 12

6Be4 + 26Mg12 1.94E-03 5.73E-03 1.07E-02 6.50E-03 1.40E-02
7Be4 + 25Mg12 2.37E-03 1.17E-02 9.83E-03 5.73E-03 1.80E-02
8Be4 + 24Mg12 2.08E-02 5.93E-02 3.40E-02 1.47E-02 3.39E-02
9Be4 + 23Mg12 1.14E-03 5.62E-03 6.04E-03 3.78E-03 1.28E-02
10Be4 + 22Mg12 2.53E-06 6.27E-05 2.57E-04 3.44E-04 2.31E-03
11Be4 + 21Mg12 3.34E-06 7.12E-05 2.95E-04 3.75E-04 2.49E-03
12Be4 + 20Mg12 8.42E-08 7.15E-06 7.11E-05 1.29E-04 1.15E-03

B Na 5 11

7B5 + 25Na11 7.11E-05 4.61E-04 1.56E-03 1.42E-03 6.73E-03
8B5 + 24Na11 2.20E-04 1.42E-03 2.34E-03 1.88E-03 7.92E-03
9B5 + 23Na11 2.04E-03 1.03E-02 8.51E-03 4.92E-03 1.51E-02
10B5 + 22Na11 9.03E-04 4.43E-03 5.18E-03 3.33E-03 1.14E-02
11B5 + 21Na11 9.93E-04 4.22E-03 5.23E-03 3.30E-03 1.18E-02
12B5 + 20Na11 4.78E-05 3.70E-04 1.04E-03 9.65E-04 4.92E-03
13B5 + 19Na11 3.52E-06 5.93E-05 3.42E-04 4.15E-04 2.69E-03
14B5 + 18Na11 1.23E-08 1.09E-06 3.15E-05 7.03E-05 7.56E-04

C Ne 6 10

8C6 + 24Ne10 2.20E-06 3.99E-05 4.14E-04 5.15E-04 3.33E-03
9C6 + 23Ne10 1.94E-05 1.19E-04 7.55E-04 7.85E-04 4.08E-03
10C6 + 22Ne10 7.33E-04 5.05E-03 4.73E-03 3.09E-03 1.05E-02
11C6 + 21Ne10 1.31E-03 5.26E-03 6.26E-03 3.81E-03 1.24E-02
12C6 + 20Ne10 1.35E-02 3.32E-02 2.34E-02 1.04E-02 2.71E-02
13C6 + 19Ne10 1.37E-03 4.48E-03 6.01E-03 3.62E-03 1.29E-02
14C6 + 18Ne10 6.86E-04 2.43E-03 3.99E-03 2.64E-03 1.03E-02
15C6 + 17Ne10 6.21E-06 7.25E-05 4.87E-04 5.36E-04 3.27E-03
16C6 + 16Ne10 2.31E-07 7.54E-06 1.25E-04 1.93E-04 1.58E-03

N F 7 9

10N7 + 22F9 6.66E-08 3.47E-06 7.60E-05 1.39E-04 1.11E-03
11N7 + 21F9 1.68E-05 8.71E-05 6.21E-04 6.55E-04 3.30E-03
12N7 + 20F9 7.41E-05 6.32E-04 1.46E-03 1.24E-03 5.49E-03
13N7 + 19F9 1.65E-03 4.53E-03 6.74E-03 3.96E-03 1.35E-02
14N7 + 18F9 1.71E-03 4.51E-03 6.75E-03 3.96E-03 1.37E-02
15N7 + 17F9 2.37E-03 6.19E-03 8.13E-03 4.55E-03 1.52E-02
16N7 + 16F9 9.85E-05 4.07E-04 1.56E-03 1.29E-03 6.13E-03

O O 8 8

12O8 + 20O8 3.48E-07 9.82E-06 1.63E-04 2.39E-04 1.60E-03
13O8 + 19O8 6.58E-06 6.92E-05 4.91E-04 5.44E-04 3.08E-03
14O8 + 18O8 8.20E-04 2.23E-03 4.53E-03 2.91E-03 1.09E-02
15O8 + 17O8 2.37E-03 5.70E-03 8.13E-03 4.55E-03 1.52E-02
16O8 + 16O8 2.02E-02 4.53E-02 2.95E-02 1.23E-02 3.14E-02

F N 9 7
14F9 + 18N7 1.62E-08 1.59E-06 4.19E-05 8.62E-05 8.57E-04
15F9 + 17N7 8.50E-06 8.83E-05 5.94E-04 6.24E-04 3.62E-03

Total 1 1 1 1 1
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Fig. 7. Isotopic branching ratios for the final channels in table 3 as a function of the mass number of A1 for incident energies
of 102.7, 173.7, 300, 500, and 1000MeV (cm). The productions of the corresponding partner A2 are the same of A1.

come of this model, has been quite often overlooked in
many previous calculations.

An interesting feature of fig. 8 is that the relative yields
of lighter mass and heavier mass nuclei actually go up
with increasing incident energy of the projectile. In the
simplest version of the evaporation model, one expects
this to go down with energy. But in the model discussed
here this occurs because of the incorporation of the final-
state interaction, because at higher energies, the decay
probability is determined by competition between three

exponential functions of energy as discussed in [21]. The
situation is similar to the observed increase of the ratio of
light to heavy fragment with increasing neutron energy in
neutron-induced fission which is well accountable for by a
theory similar to the one used in [21].

The branching ratios provided in table 4 reflect the rel-
ative production rates. The computation of absolute pro-
duction rates involves calculations of the CN formation
cross-section, σC , for which there is no standard method.
The reasonable accurate method of Haider and Malik [17]
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Table 4. Total isobaric branching ratios for each isobaric pair for five energies.

A1 A2 Final channel
Total isobaric branching ratio

102.7MeV 173.7MeV 300MeV 500MeV 1000MeV

1 31
1n0 + 31S16

0.2485 0.2536 0.3544 0.3092 0.2351
1H1 + 31P15

2 30 2H1 + 30P15 0.0447 0.0549 0.0967 0.0925 0.0708

3 29
3H1 + 29P15

0.0570 0.0826 0.1176 0.1247 0.0939
3He2 + 29Si14

4 28

4H1 + 28P15

0.5034 0.2991 0.1547 0.2219 0.11414He2 + 28Si14
4Li3 + 28Al13

5 27
5He2 + 27Si14

0.0638 0.0617 0.0519 0.1025 0.0708
5Li3 + 27Al13

6 26

6He2 + 26Si14

0.0059 0.0221 0.0264 0.0293 0.04586Li3 + 26Al13
6Be4 + 26Mg12

7 25

7He2 + 25Si14

0.0036 0.0189 0.0185 0.0176 0.0420
7Li3 + 25Al13
7Be4 + 25Mg12
7B5 + 25Na11

8 24

8He2 + 24Si14

0.0210 0.0614 0.0379 0.0207 0.0517

8Li3 + 24Al13
8Be4 + 24Mg12
8B5 + 24Na11
8C6 + 24Ne10

9 23

9Li3 + 23Al13

0.0032 0.0161 0.0156 0.0112 0.0345
9Be4 + 23Mg12
9B5 + 23Na11
9C6 + 23Ne10

10 22

10Li3 + 22Al13

0.0016 0.0096 0.0103 0.0070 0.0260

10Be4 + 22Mg12
10B5 + 22Na11
10C6 + 22Ne10
10N7 + 22F9

11 21

11Be4 + 21Mg12

0.0023 0.0096 0.0124 0.0081 0.0300
11B5 + 21Na11
11C6 + 21Ne10
11N7 + 21F9

12 20

12Be4 + 20Mg12

0.0136 0.0342 0.0262 0.0130 0.0403

12B5 + 20Na11
12C6 + 20Ne10
12N7 + 20F9
12O8 + 20O8

13 19

13B5 + 19Na11

0.0030 0.0091 0.0136 0.0085 0.0321
13C6 + 19Ne10
13N7 + 19F9
13O8 + 19O8

14 18

14B5 + 18Na11

0.0032 0.0092 0.0153 0.0097 0.0365

14C6 + 18Ne10
14N7 + 18F9
14O8 + 18O8
14F9 + 18N7

15 17

15C6 + 17Ne10

0.0048 0.0121 0.0173 0.0103 0.0373
15N7 + 17F9
15O8 + 17O8
15F9 + 17N7

16 16

16C6 + 16Ne10

0.0203 0.0458 0.0312 0.0138 0.039116N7 + 16F9
16O8 + 16O8

TOTAL 1 1 1 1 1
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Fig. 8. Isobaric branching ratios for the isobars A = 1 to 16 as a function of the cm incident energies. The production of the
corresponding isobaric partners of A = 16 to 31 can be deduced from this figure by looking at the yields for its complementary
partner, i.e. the yields for A = 20 are the same as those of its partner A = 12.

to compute capture cross-section of two colliding heavy
ions has not been tested for alpha-particle capture and de-
pends on the details of the potential of two colliding ions.
In addition to these methods, there are a number of sim-
ple global methods employed to estimate the compound-
nucleus formation cross-sections described in refs. [5,22–
27]. The absolute production cross-section of a particular
element, or its isotopes can be obtained by simply mul-

tiplying its branching ratio, noted in table 4 by the CN
formation cross-sections, σC , at all energies.

Woo et al. [4] have measured the total reaction cross-
sections for the two energies 117.4 and 198.5MeV (lab)
by summing up the A ≥ 6 cross-sections directly, but the
production cross-section of A = 1, 2, 3, 4 and 5 are not
included in their measurements. However, we note that
theoretically the production cross-section for A = 1, 2, 3,



180 The European Physical Journal A

A=9

0.001

0.01

0.1

1

102 173 300 500 1000

Energy (MeV)

B
ra

n
c
h

in
g

 R
a

ti
o

 (
lo

g
 s

c
a

le
) A=10

0.001

0.01

0.1

1

102 173 300 500 1000

Energy (MeV)

B
ra

n
c
h

in
g

 R
a

ti
o

 (
lo

g
 s

c
a

le
)

A=11

0.001

0.01

0.1

1

102 173 300 500 1000

Energy (MeV)

B
ra

n
c
h

in
g

 R
a

ti
o

 (
lo

g
 s

c
a

le
)

A=12

0.001

0.01

0.1

1

102 173 300 500 1000

Energy (MeV)

B
ra

n
c
h

in
g

 R
a

ti
o

 (
lo

g
 s

c
a

le
)

A=13

0.001

0.01

0.1

1

102 173 300 500 1000

Energy (MeV)

B
ra

n
c
h

in
g

 R
a

ti
o

 (
lo

g
 s

c
a

le
) A=14

0.001

0.01

0.1

1

102 173 300 500 1000

Energy (MeV)

B
ra

n
c
h

in
g

 R
a

ti
o

 (
lo

g
 s

c
a

le
)

A=15

0.001

0.01

0.1

1

102 173 300 500 1000

Energy (MeV)

B
ra

n
c
h

in
g

 R
a

ti
o

 (
lo

g
 s

c
a

le
) A=16

0.001

0.01

0.1

1

102 173 300 500 1000

Energy (MeV)

B
ra

n
c
h

in
g

 R
a

ti
o

 (
lo

g
 s

c
a

le
)

Fig. 8. Continued.

Table 5. Total reaction cross-sections (mb).

Ecm (MeV) σR
a σR

b σR
c σR

d σR (this work)

102.7 670 950 1212 1230 1483
173.7 640 950 1133 1104 1366
300.0 – – – – 1232
500.0 – – – – 1100
1000.0 – – – – 927

a
Reference [4];

b
ref. [28];

c
ref. [29];

d
ref. [30].

4, and 5 is significant. As such, the measured cross-section
represents the lower limit of the cross-section, and the ac-
tual cross-section should be significantly higher. Our cal-
culations for the total cross-section for these two energies
are listed in table 5 and compared with the data of [4] and
the predicted calculations from Webber et al. [28], Kox et
al. [29], and Karol [30]. We have also calculated the to-
tal cross-section for energies 300, 500, and 1000MeV (cm)
as indicated in table 5. Our calculations are in relatively
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good agreement with the other calculations [28–30] and in-
dicate the expected decrease in the reaction cross-section
with increasing energy due to the target transparency.

5 Conclusion

The calculations of fragmentation cross-sections in this pa-
per indicate that nuclei in alpha-induced fragmentation of
28Si are emitted in all possible excited and ground states
allowed by the energy conservation. In fact, the probabili-
ties of fragments being emitted in excited states are signif-
icantly higher than those being emitted in ground states,
except for hydrogen and helium, at all incident energies.
While H and He are dominant fragments at all incident
energies, as expected, the relative production rate of these
two elements compared to those of other elements reduces
significantly with increasing incident energies. The theory
can reproduce the observed energy dependence of isobars
16, 20, and 24 at 30◦ and the isobar 24, at a few other
angles. In addition, the observed angular distributions of
the production cross-sections for A = 7, 12, 16, 20, and 28
are well accounted for, assuming the emitted fragments to
be in excited states. Obviously, direct processes are likely
to contribute additionally to the production of light el-
ements, particularly, isotopes of hydrogen and helium at
forward angles. However, the production of other elements
is expected to be reasonably described by this model.

The authors are pleased to acknowledge the NSF grant
No. INT-0209583. The authors thank Dr. Ram Tripathi for
discussion.
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